
Parallel String Similarity Join with Word Vectors
Using MapReduce

Final Report, 4th Jan '16

Selim Eren Bekçe
Dept. of Computer Engineering

Bilkent University
Ankara, Türkiye

eren.bekce@bilkent.edu.tr

Abstract— In this paper, we will show how to efficiently perform
string similarity joins in parallel using the MapReduce framework.
We will also use a semantic word to vector data set on extracted
words to investigate semantic similarity of each record pair. If we
compared every record with each other (e.g. the brute force method),
the runtime complexity quickly becomes infeasible, so we will apply a
filtering function first to prune dissimilar pairs.

I. INTRODUCTION

Finding similar pairs of strings has very wide usages, such
as plagiarism detection, finding similar tweets for social media
analytics, detection of near-similar web pages for pruning web
crawling output and finding matching pairs for data
management applications. Some data management applications
have data merging needs where the same attribute is duplicated
across many tables and needs to be merged as automatic as
possible.

As the data in our world grows exponentially (e.g. big data)
the amount of data usually exceeds the memory capacity of one
machine. Therefore, we need to scale the computation
horizontally to multiple machines (e.g. scale out) in an efficient
manner. MapReduce is the popular and effective framework of
choice when it comes to parallel computation, we will propose
an algorithm to run on Hadoop MapReduce framework.

The brute force method to find similarity set is to compare
every item with other, which needs n(n-1)/2 comparisons in
total, leading to runtime complexity of O(n^2). There are
several optimization methods (e.g. filtering) to prune the
number of pairs to compare so that the complexity drops
significantly for many types of data sets. We will employ at
least one filtering method to reduce number of comparisons to
calculate.

The simplest idea for the similarity join algorithm is as
follows. Tokenize the record into multiple tokens (words).
Tokenization is a very important step which defines the quality
of the join and affects the number of compared pairs. We prune
the pairs of records which share no common tokens. This is the
filtering part. Then, compare the remaining pairs of records and
calculate the similarity of records based on their common token
counts.

Text mining and NLP techniques had evolved to find
semantic meanings of texts in context. There are tools and data
sets to run on corpus data and map words to vectors in
multidimensional space w.r.t. their context in sentences. We
can thus calculate the cosine similarity of word pairs from this
multidimensional word space to find the k-NN of each word.
We can thus use this data in our similarity join problem to find
semantically close pairs of records.

For example, consider two sentences “Our country is
brimming with energy” and “My nation is a bright star”. With
plain count filtering similarity-join, we would find no
correlation between those sentences because there are no
common word pairs (assuming we prune some common words
such as 'is', 'a', 'with', etc). However, by using the word to
vector data, we would find a similarity between those
sentences because they are semantically close.

II. BACKGROUND INFORMATION

A. String Similarity Join
There are two main methods to investigate similarity of two

strings. Character based methods calculate edit distance (i.e.
the number of character addition, deletion or replacement
operations to transform one string to another). Token based
methods apply set-similarity join techniques after transforming
the text into set of tokens [1]. We will explore token-based
similarity join with Jaccard metric on our project.

B. Word Vectors
Word2Vec is a technique which produces high dimensional

vectors from a large text corpora. The output is a set of vectors
for each word in the given corpus, located in the multi
dimensional feature space with respect to their semantic
meaning. Such that, the cosine similarity value of similar
words (vectors) tends to be higher than dissimilar pairs.

The method is a series of vector operations to preserve
linear regularities amongst words. It employs some deep
learning and neural network techniques. [3]

1

Earliest Neural Network Language Models (NNLM) date
back to 1986. However, these methods were not efficient for
the scale of today's data, some recent scalable methods (skip-
gram and continuous bag of words) have emerged since then.
[4] [5]

Example runtime output of finding similar tokens:
Word: chuckles Position in vocabulary: 40984

word similarity

laughs 0.808566

chuckle 0.720890

guffaws 0.691016

laughter 0.681049

snickers 0.670588

smirks 0.657066

giggles 0.656259

The similarity value is the cosine difference value of the
vector pair.

III. WORK DONE

A. Tokenization
Tokenization is a very important aspect which directly

affects the runtime performance of the algorithm because the
output of the tokenization affects the number of pairs
compared.

An excessive tokenization logic would produce large
number of tokens from each record, leading to high number of
comparisons where performance degrades sharply with small
increases in number of records, thus discarding the benefits of
count filtering.

A conservative tokenization, on the other hand, would
produce poor results that even clearly similar records would go
unnoticed by the algorithm because the tokenization did not
consider punctuation, accents, casing, etc.

However, excellence of a tokenization technique is highly
dependent to the record nature, so there is no single good way
to do it.

Our evaluations were performed on Twitter tweets. We
have decided to tokenize on non-alphanumeric characters, that
is, whitespace plus punctiation. However, special care taken to
not split urls (http://www…) because splitting urls leads to
excessive tokenization. We then omitted short tokens (less than
3 characters) and lowercased all tokens. We did not have a
chance to evaluate other tokenization options such as
Treebank-style, Sentiment-aware [10], etc.

B. The Algorithm
We take set of records and produce signatures from each

record:

1. Tokenize the record, do appropriate data cleaning and
get list of tokens, with their occurrence counts.

2. Contact the word to vector data set and get the
semantically close words w.r.t. cosine similarity for
each token on the list.

3. For each semantically close word, multiply its
occurrence count with cosine similarity value and
append it to list. Note that the occurrence value has
become decimal.

At the end we will have a mixed list of tokens and counts,
emit them as key → (record, total_count,
count). total_count is the sum of all token counts for given
record. We need this value in our last step, where we calculate
the Jaccard similarity values.

On the next step, emit each record pair:
((record 1, total_count), (record 2,
total_count)) → (key, count)

On the final step, calculate similarity of each record pair
w.r.t. Jaccard filtering and given threshold value. Jaccard count
filtering simply selects pairs when this condition is met:
| a ∩ b | / | a u b | >= t

This is a pseudo-code for the similarity function:
is_similar (r1, r2, threshold) : boolean
define shared as number_of_shared_tokens_in(r1,r2)
define similarity as (r1.total_count + r2.total_count
- shared) / shared
return similarity >= threshold

C. Similarity Join Example
We will work through an example case. Input records:

R1: A B C A B A
R2: B A D B D
R3: E F F D
R4: D E G E G G D
R5: A A B

Phase 1: Tokenize records then group by token

A → (R1, 6, 3), B → (R1, 6, 2), C → (R1, 6, 1) //R1
B → (R2, 5, 2), A → (R2, 5, 1), D → (R2, 5, 2) //R2
E → (R3, 4, 1), F → (R3, 4, 2), D → (R3, 4, 1), //R3
D → (R4, 7, 2), E → (R4, 7, 2), G → (R4, 7, 3), //R4
A → (R5, 3, 2), B → (R5, 3, 1) //R5

Then,

A → ((R1, 6, 3), (R2, 5, 1), (R5, 3, 2))
B → ((R1, 6, 2), (R2, 5, 2), (R5, 3, 1))
C → ((R1, 6, 1))
D → ((R2, 5, 2), (R3, 4, 1), (R4, 7, 2))
E → …, F → …, G → …

Phase 2: Produce combinations of each pair then group by
pair. Generate record pair combinations for A, take minimum
occurrence for each pair then emit:

((R1, 6), (R2, 5)) → (A, 1) // min(3,1)=1
((R1, 6), (R5, 3)) → (A, 2) // min(3,2)=2

2

((R2, 5), (R5, 3)) → (A, 1) // min(1,2)=1
((R1, 6), (R5, 3)) → (B, 1) // min(2,1)=1

Then, group by pair and sum the common occurance
counts,

((R1, 6), (R5, 3)) → 3 // (A,2) + (B,1)

Phase 3: Calculate similarity. By now, we have everything
to calculate Jaccard Similarity score: 3 / (6 + 5 - 3) = 0.375

If the value is bigger than some threshold, we report the
pair as similar, else, we discard it.

D.Similarity Join with Word2Vec Example
We will query Word2Vec in Phase 1 and get semantically

close words to the current word, then multiply the occurance
count with cosine difference.

Input Records:

R1: B A D B D
R2: E F F D
R3: G G H

Word Vectors: Here we show 3 word pairs with their cosine
difference in paranthesis. Reverse mappings were omitted for
clarity.

A → G (0.65)
B → A (0.55)
B → G (0.45)

Phase 1: We have modified Phase 1 so that for each token
in the record, we query Word2Vec data and get its nearest
words. We use their cosine difference and emit them as normal
tokens: their cosine difference now become their occurance
count in the output. The total size of the record is also updated
to match total output.

B → (R1, 7.65, 2)
A → (R1, 7.65, 2.1)
D → (R1, 7.65, 2)
G → (R1, 7.65, 1.55)

Phase 2 and 3 are the same as plain similarity join.

In this example, before Word2Vec, there was no correlation
for pairs R1 and R3. However after we consult word vectors,
R1 and R3 become eligible for similarity calculation as they
now have token 'G' in common. This will lead to more pairs to
be eligible for similarity calculation.

E. Pig Algorithm
We have developed the similarity join algorithm in Pig

Latin. Apache Pig is a project in Hadoop ecosystem, which
provides an easy way to develop MapReduce programs,
without regular hiccups of Java programming. It is an
imperative programming style which lets users to specify how
to perform operations on data in an intuitive manner. It has
built in functions that can perform common data processing

operations like grouping, filtering, sorting, transforming,
flattening, joining, etc. [8]

Pig transforms Pig Latin programs to Hadoop jobs at
runtime, which directly uses the underlying HDFS to achieve
MR-style parallel programming.

We have implemented both plain Similarity Join and the
one with word2vec in Pig Latin. We have planned to run both
versions for comparison.

Apache Pig has User Defined Functions feature which
allows users to write custom functions to apply to data. We
have written two UDFs to implement Phase 1 and Phase 2 as in
my original design. The sources are attached to the report.

F. Spark Algorithm
Apache Spark is an engine for large-scale parallel data

processing. Users can write jobs in Scala which takes
advantage of in-memory computation (if possible), which
happens to be faster than using Hadoop, because Hadoop is
more dependent on I/O operations. Spark introduces the
concept of resilient distributed data sets (RDD) and each
operation is either a transformation (like map, filter, sample,
groupByKey, reduceByKey) or an action (like persist, dump)
which marks the end of computation. [9]

We have also implemented similarity join in Spark, without
word vector feature. The source of the spark code is attached to
the report.

IV. EVALUATION & DISCUSSION

Operations were performed using one computer with 16
GB of RAM.

A. Data Collection (Tweets)
Input data was collected using Twitter API's sample

endpoint, which streams a portion of global public tweets all
the time. We have written the data collector in Java, and
programmed it to discard non-English tweets and retweets of
other tweets. Retweets of other tweets will not constitute
anything to the result as we know that they are equal (except a
“RT” at the beginning).

In approximately one day, it collected near 500K tweets,
which met our goal. We then formatted the tweets as a TSV file
with two columns: tweet id and tweet content.

B. Word2Vec
There are two implementations of Word2Vec in public

domain, one is the original C implementation [7], the other is a
Java implementation in the open source Deeplearning4j project
[6]. We have done experiments with both of them.

The original one runs very efficiently but it is poorly
written so it is hard to refactor for external use. The latter has a
Java API which can be easily consumed by our Pig UDF, but
currently its performance suffers such that a query takes 60
seconds to run, which made it impossible to use in production.

3

We have also contacted with the developers of the
deeplearning4j, they recognized the problem but offered no
current solution. The next step would be to refactor and port
the C code to Java, which will enable the use in production
environment.

We have used the pre-trained vector data trained on Google
News dataset (about 100 billion words), which contains 300-
dimensional vectors for 3 million words and phrases [6][7].
This pretrained dataset is not exactly perfect for our needs.
Vectors are case sensitive: since we chose to lowercase all
tokens, we miss some important relations such as 'İstanbul' and
'Turkey'. It has ngrams (multiple word tokens) that we don't
employ in our algorithm. Data is not filtered the same way as
we do. However, training such vectors take very long time on
common hardware so even though it wasn't the best fit, the data
is big enough to catch good semantic similarities.

On loading the model, Word2Vec reads the compressed
binary model file then constructs in-memory lookup table to
serve nearest word queries. However, this process needs a large
portion of memory (6-8 GB) to be available in the worker
node. Since MapReduce works distributed, Word2Vec model
needs to be loaded on every worker node, which also means
that every worker node will be required to have specified
amount of RAM available. This extra requirement may affect
some cluster configuration because many common jobs
wouldn't require that kind of memory. Distribution of the
Word2Vec model file can either be done manually to every
node or it can be placed in HDFS where participating nodes
can read from.

 …

Figure: Memory of worker nodes while running SimJoin with
Word2Vec. Each node loads W2V model at the start of the job.

C. Performance: Pig Algorithm
Experiments of plain similarity join algorithm were

performed with different number of input data on a single
node.

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

Item Count (x1000)

R
u

n
tim

e
 (

s)

Input size (x1000) Runtime (s) count (and percentage)
of similar pairs, t = 0.6

10 186 1866 (0.00373 %)

15 465 3814 (0.00339 %)

20 695 5094 (0.00255 %)

25 1243 9940 (0.00318 %)

30 2201 14273 (0.00317 %)

35 3248 19070 (0.00311 %)

45 6212 31187 (0.00308 %)

55 10514 45074 (0.00298 %)

100 38895 116749 (0.00234 %)

Third column denotes the number of similar pairs reported
for each case. The percentage value in paranthesis denote what
percentage is the similar pairs to all possible pairs (n^2-n)/2,
which suggests that similar pairs are very sparse (approx. 1 in
31000 pairs).

The reason of the sharp increase for 100K data is that the
intermediate data to reduce was too big (around 50 GB
observed) for one node to process efficiently, so the reduce
took too much time to complete. We need more nodes to test
this.

The line is somewhere between O(n) and O(n^2) just as
expected: Count filtering technique prunes dissimilar pairs so
average runtime complexity is less than the worst case
complexity O(n^2). This can be improved with multiple nodes
and/or other aggressive pruning techniques.

D.Performance: Spark Algorithm

Input size (x1000) Runtime (s)

5 137

10 1269

20 6681

Spark application took more time because of high garbage
collection needs while processing RDDs. Every transformation
creates many objects on the fly so it leads to high amount of
GC activity. The code can be tweaked to achieve better
timings.

E. Sample Output & Discussion
Table below shows partial output of the algorithm.

Tweet 1 Tweet 2 Score

@Ntshalie thank you >thank-you! MG
https://t.co/OKQd1C4qdt

0.6667

Happy birthday!!!:)) hope you
have a great day

@alexbradbury33
https://t.co/tTX84X1tzs

@alexissopata happy 18th
birthday! Hope you have a

great day

0.7

4

MR Job

W2V Model

MR Job

W2V Model

MR Job

W2V Model

one person followed me //
automatically checked by
https://t.co/bc1Vm47Cho

one person unfollowed me //
automatically checked by
https://t.co/vGocgQxKng

0.6667

I've harvested 1,750 of food!
https://t.co/K83OFXYxeK
#android, #androidgames,

#gameinsight

I've harvested 377 of food!
https://t.co/WzlHXGASgF
#android, #androidgames,

#gameinsight

0.7143

Just posted a photo
https://t.co/7rGxjVujHm

Just posted a photo
https://t.co/oHRJKWmQm5

1.0

High scored pairs are mostly auto generated tweets from
various applications and websites as they generally offer a
'tweet this' button which offers a template which most people
do not bother to change before posting it.

There are also authentic pairs such as “happy birthday” and
“thank you” messages in the table. They have high score
because they are short and shared tokens constitute a high
percentage of all tokens. If either one was longer, the score
would decrease so they may not be able to reach the threshold.

By intuiton, it is also unlikely that human created content to
have high Jaccard score without direct copying involved.
Filtering out top score (> 0.9) pairs will likely prune some of
the non-authentic tweet pairs.

V. CONCLUSION & FUTURE REMARKS

This project has helped us to learn and apply much about
similarity join with MapReduce and word vectors.

Still, there can be many improvements:
• Other token-based metrics such as OVERLAP, DICE,

COSINE can be experimented.
• Aggressive pruning (filtering) can be implemented

such as prefix filtering. This will greatly help lower
runtime costs.

• Trials with multiple nodes can be performed to
explore the algorithm scalability.

• Maximum score upper bound can be used to prune
machine-generated record pairs.

• Use a better tokenization technique for high quality
results.

• Experiment with different datasets such as articles,
homework assignments, other social network posts.

• Port Word2Vec to Java for better performance.
• Retrain Word2Vec vector data with relevant

optimizations.

VI. REFERENCES

[1] Yu Jiang, Guoliang Li, Jianhua Feng and Wen-Syan Li. "String
Similarity Joins: An Experimental Evaluation".

[2] R. Vernica, M. Carey, Chen Li. "Efficient Parallel Set-Similarity
Joins Using MapReduce".

[3] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean.
"Efficient Estimation of Word Representations in Vector Space".
arXiv:1301.3781 [cs.CL]

[4] Yoav Goldberg, Omer Levy. "word2vec Explained: deriving
Mikolov et al.'s negative-sampling word-embedding method".
arXiv:1402.3722 [cs.CL]

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
Jeffrey Dean. "Distributed Representations of Words and
Phrases and their Compositionality". arXiv:1310.4546 [cs.CL]

[6] Deeplearning4j: Word2Vec.
http://deeplearning4j.org/word2vec.html

[7] word2vec: Tool for computing continuous distributed
representations of words. https://code.google.com/p/word2vec/

[8] Apache Pig. http://pig.apache.org/docs/r0.15.0/start.html

[9] Apache Spark. http://spark.apache.org/docs/latest/programming-
guide.html

[10] Sentiment-aware tokenizer.
http://sentiment.christopherpotts.net/tokenizing.html#sentiment

5

	I. Introduction
	II. Background Information
	A. String Similarity Join
	B. Word Vectors

	III. Work Done
	A. Tokenization
	B. The Algorithm
	C. Similarity Join Example
	D. Similarity Join with Word2Vec Example
	E. Pig Algorithm
	F. Spark Algorithm

	IV. Evaluation & Discussion
	A. Data Collection (Tweets)
	B. Word2Vec
	C. Performance: Pig Algorithm
	D. Performance: Spark Algorithm
	E. Sample Output & Discussion

	V. Conclusion & Future Remarks
	VI. References

