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Abstract— In this paper, we will show how to efficiently perform
string similarity joins in parallel using the MapReduce framework.
We will  also use a semantic word to vector data set  on extracted
words to investigate semantic similarity of each record pair. If  we
compared every record with each other (e.g. the brute force method),
the runtime complexity quickly becomes infeasible, so we will apply a
filtering function first to prune dissimilar pairs. 

I. INTRODUCTION

Finding similar pairs of strings has very wide usages, such
as plagiarism detection, finding similar tweets for social media
analytics, detection of near-similar web pages for pruning web
crawling  output  and  finding  matching  pairs  for  data
management applications. Some data management applications
have data merging needs where the same attribute is duplicated
across many tables and needs to be merged as automatic as
possible. 

As the data in our world grows exponentially (e.g. big data)
the amount of data usually exceeds the memory capacity of one
machine.  Therefore,  we  need  to  scale  the  computation
horizontally to multiple machines (e.g. scale out) in an efficient
manner. MapReduce is the popular and effective framework of
choice when it comes to parallel computation, we will propose
an algorithm to run on Hadoop MapReduce framework. 

The brute force method to find similarity set is to compare
every item with other, which needs n(n-1)/2 comparisons in
total,  leading  to  runtime  complexity  of  O(n^2).  There  are
several  optimization  methods  (e.g.  filtering)  to  prune  the
number  of  pairs  to  compare  so  that  the  complexity  drops
significantly for many types of data sets. We will employ at
least one filtering method to reduce number of comparisons to
calculate. 

The simplest  idea  for  the  similarity  join  algorithm is  as
follows.  Tokenize  the  record  into  multiple  tokens  (words).
Tokenization is a very important step which defines the quality
of the join and affects the number of compared pairs. We prune
the pairs of records which share no common tokens. This is the
filtering part. Then, compare the remaining pairs of records and
calculate the similarity of records based on their common token
counts. 

Text  mining  and  NLP  techniques  had  evolved  to  find
semantic meanings of texts in context. There are tools and data
sets  to  run  on  corpus  data  and  map  words  to  vectors  in
multidimensional  space  w.r.t.  their  context  in  sentences.  We
can thus calculate the cosine similarity of word pairs from this
multidimensional word space to find the k-NN of each word.
We can thus use this data in our similarity join problem to find
semantically close pairs of records.

For  example,  consider  two  sentences  “Our  country  is
brimming with energy” and “My nation is a bright star”. With
plain  count  filtering  similarity-join,  we  would  find  no
correlation  between  those  sentences  because  there  are  no
common word pairs (assuming we prune some common words
such  as  'is',  'a',  'with',  etc).  However,  by  using the  word  to
vector  data,  we  would  find  a  similarity  between  those
sentences because they are semantically close. 

II. BACKGROUND INFORMATION

A. String Similarity Join
There are two main methods to investigate similarity of two

strings.  Character  based methods calculate edit  distance  (i.e.
the  number  of  character  addition,  deletion  or  replacement
operations  to  transform one string  to  another).  Token  based
methods apply set-similarity join techniques after transforming
the text  into set  of  tokens [1].  We will  explore token-based
similarity join with Jaccard metric on our project. 

B. Word Vectors
Word2Vec is a technique which produces high dimensional

vectors from a large text corpora. The output is a set of vectors
for  each  word  in  the  given  corpus,  located  in  the  multi
dimensional  feature  space  with  respect  to  their  semantic
meaning.  Such  that,  the  cosine  similarity  value  of  similar
words (vectors) tends to be higher than dissimilar pairs. 

The  method  is  a  series  of  vector  operations  to  preserve
linear  regularities  amongst  words.  It  employs  some  deep
learning and neural network techniques. [3]
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Earliest Neural  Network Language Models (NNLM) date
back to 1986. However, these methods were not efficient for
the scale of today's data, some recent scalable methods (skip-
gram and continuous bag of words) have emerged since then.
[4] [5]

Example  runtime  output  of  finding  similar  tokens:  
Word: chuckles  Position in vocabulary: 40984 

word similarity

laughs 0.808566 

chuckle 0.720890 

guffaws 0.691016 

laughter 0.681049 

snickers 0.670588 

smirks 0.657066 

giggles 0.656259 

The similarity value is the cosine difference value of the
vector pair.

III. WORK DONE

A. Tokenization
Tokenization  is  a  very  important  aspect  which  directly

affects the runtime performance of the algorithm because the
output  of  the  tokenization  affects  the  number  of  pairs
compared.

An  excessive  tokenization  logic  would  produce  large
number of tokens from each record, leading to high number of
comparisons where performance degrades sharply with small
increases in number of records, thus discarding the benefits of
count filtering.

A  conservative  tokenization,  on  the  other  hand,  would
produce poor results that even clearly similar records would go
unnoticed by the algorithm because  the tokenization did not
consider punctuation, accents, casing, etc. 

However, excellence of a tokenization technique is highly
dependent to the record nature, so there is no single good way
to do it. 

Our  evaluations  were  performed  on  Twitter  tweets.  We
have decided to tokenize on non-alphanumeric characters, that
is, whitespace plus punctiation. However, special care taken to
not  split  urls  (http://www…)  because  splitting  urls  leads  to
excessive tokenization. We then omitted short tokens (less than
3 characters)  and lowercased  all  tokens.  We did not  have  a
chance  to  evaluate  other  tokenization  options  such  as
Treebank-style, Sentiment-aware [10], etc. 

B. The Algorithm
We take set of records and produce signatures from each

record: 

1. Tokenize the record, do appropriate data cleaning and
get list of tokens, with their occurrence counts. 

2. Contact  the  word  to  vector  data  set  and  get  the
semantically  close  words w.r.t.  cosine  similarity  for
each token on the list.

3. For  each  semantically  close  word,  multiply  its
occurrence  count  with  cosine  similarity  value  and
append it to list. Note that the occurrence value has
become decimal.

At the end we will have a mixed list of tokens and counts,
emit  them  as  key  →  (record,  total_count,
count). total_count is the sum of all token counts for given
record. We need this value in our last step, where we calculate
the Jaccard similarity values. 

On the next step, emit each record pair: 
((record 1, total_count), (record 2, 
total_count)) → (key, count) 

On the final step, calculate similarity of each record pair
w.r.t. Jaccard filtering and given threshold value. Jaccard count
filtering  simply  selects  pairs  when  this  condition  is  met:  
| a ∩ b | / | a u b | >= t

This is a pseudo-code for the similarity function:
is_similar (r1, r2, threshold) : boolean 
define shared as number_of_shared_tokens_in(r1,r2) 
define similarity as (r1.total_count + r2.total_count
- shared) / shared
return similarity >= threshold

C. Similarity Join Example
We will work through an example case. Input records: 

R1: A B C A B A
R2: B A D B D
R3: E F F D
R4: D E G E G G D
R5: A A B

Phase 1: Tokenize records then group by token

A → (R1, 6, 3), B → (R1, 6, 2), C → (R1, 6, 1) //R1
B → (R2, 5, 2), A → (R2, 5, 1), D → (R2, 5, 2) //R2
E → (R3, 4, 1), F → (R3, 4, 2), D → (R3, 4, 1), //R3
D → (R4, 7, 2), E → (R4, 7, 2), G → (R4, 7, 3), //R4
A → (R5, 3, 2), B → (R5, 3, 1) //R5

Then, 

A → ((R1, 6, 3), (R2, 5, 1), (R5, 3, 2))
B → ((R1, 6, 2), (R2, 5, 2), (R5, 3, 1))
C → ((R1, 6, 1))
D → ((R2, 5, 2), (R3, 4, 1), (R4, 7, 2))
E → …, F → …, G → … 

Phase 2: Produce combinations of each pair then group by
pair. Generate record pair combinations for A, take minimum
occurrence for each pair then emit: 

((R1, 6), (R2, 5)) → (A, 1) // min(3,1)=1 
((R1, 6), (R5, 3)) → (A, 2) // min(3,2)=2
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((R2, 5), (R5, 3)) → (A, 1) // min(1,2)=1
((R1, 6), (R5, 3)) → (B, 1) // min(2,1)=1

Then,  group  by  pair  and  sum  the  common  occurance
counts,

((R1, 6), (R5, 3)) → 3 // (A,2) + (B,1)

Phase 3: Calculate similarity. By now, we have everything
to calculate Jaccard Similarity score: 3 / (6 + 5 - 3) = 0.375

If the value is bigger than some threshold, we report  the
pair as similar, else, we discard it.

D.Similarity Join with Word2Vec Example
We will query Word2Vec in Phase 1 and get semantically

close words to the current word, then multiply the occurance
count with cosine difference. 

Input Records:

R1: B A D B D
R2: E F F D
R3: G G H

Word Vectors: Here we show 3 word pairs with their cosine
difference in paranthesis. Reverse mappings were omitted for
clarity. 

A → G (0.65)
B → A (0.55)
B → G (0.45)

Phase 1: We have modified Phase 1 so that for each token
in  the  record,  we  query  Word2Vec  data  and  get  its  nearest
words. We use their cosine difference and emit them as normal
tokens:  their  cosine  difference  now become  their  occurance
count in the output. The total size of the record is also updated
to match total output.

B → (R1, 7.65, 2)
A → (R1, 7.65, 2.1)
D → (R1, 7.65, 2)
G → (R1, 7.65, 1.55)

Phase 2 and 3 are the same as plain similarity join. 

In this example, before Word2Vec, there was no correlation
for pairs R1 and R3. However after we consult word vectors,
R1 and R3 become eligible for similarity calculation as they
now have token 'G' in common. This will lead to more pairs to
be eligible for similarity calculation. 

E. Pig Algorithm
We have  developed  the  similarity  join  algorithm in  Pig

Latin.  Apache Pig is  a  project  in  Hadoop ecosystem, which
provides  an  easy  way  to  develop  MapReduce  programs,
without  regular  hiccups  of  Java  programming.  It  is  an
imperative programming style which lets users to specify how
to perform operations on data in an intuitive manner. It  has
built  in functions that  can perform common data processing

operations  like  grouping,  filtering,  sorting,  transforming,
flattening, joining, etc. [8]

Pig  transforms  Pig  Latin  programs  to  Hadoop  jobs  at
runtime, which directly uses the underlying HDFS to achieve
MR-style parallel programming. 

We have implemented both plain Similarity Join and the
one with word2vec in Pig Latin. We have planned to run both
versions for comparison. 

Apache  Pig  has  User  Defined  Functions  feature  which
allows users to write custom functions to apply to data.  We
have written two UDFs to implement Phase 1 and Phase 2 as in
my original design. The sources are attached to the report. 

F. Spark Algorithm
Apache  Spark  is  an  engine  for  large-scale  parallel  data

processing.  Users  can  write  jobs  in  Scala  which  takes
advantage  of  in-memory  computation  (if  possible),  which
happens to be faster  than using Hadoop, because Hadoop is
more  dependent  on  I/O  operations.  Spark  introduces  the
concept  of  resilient  distributed  data  sets  (RDD)  and  each
operation is either a transformation (like map, filter, sample,
groupByKey, reduceByKey) or an action (like persist, dump)
which marks the end of computation. [9]

We have also implemented similarity join in Spark, without
word vector feature. The source of the spark code is attached to
the report. 

IV. EVALUATION & DISCUSSION

Operations  were  performed  using  one  computer  with 16
GB of RAM. 

A. Data Collection (Tweets)
Input  data  was  collected  using  Twitter  API's  sample

endpoint, which streams a portion of global public tweets all
the  time.  We have  written  the  data  collector  in  Java,  and
programmed it to discard non-English tweets and retweets of
other  tweets.  Retweets  of  other  tweets  will  not  constitute
anything to the result as we know that they are equal (except a
“RT” at the beginning). 

In approximately one day, it  collected near 500K tweets,
which met our goal. We then formatted the tweets as a TSV file
with two columns: tweet id and tweet content. 

B. Word2Vec
There  are  two  implementations  of  Word2Vec  in  public

domain, one is the original C implementation [7], the other is a
Java implementation in the open source Deeplearning4j project
[6]. We have done experiments with both of them. 

The  original  one  runs  very  efficiently  but  it  is  poorly
written so it is hard to refactor for external use. The latter has a
Java API which can be easily consumed by our Pig UDF, but
currently  its  performance suffers  such that  a  query takes  60
seconds to run, which made it impossible to use in production.
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We  have  also  contacted  with  the  developers  of  the
deeplearning4j,  they  recognized  the  problem but  offered  no
current solution. The next step would be to refactor and port
the C code to Java, which will enable the use in production
environment.

We have used the pre-trained vector data trained on Google
News dataset (about 100 billion words), which contains 300-
dimensional  vectors  for  3  million words and phrases  [6][7].
This  pretrained  dataset  is  not  exactly  perfect  for  our  needs.
Vectors  are  case  sensitive:  since  we  chose  to  lowercase  all
tokens, we miss some important relations such as 'İstanbul' and
'Turkey'.  It  has ngrams (multiple word tokens) that we don't
employ in our algorithm. Data is not filtered the same way as
we do. However, training such vectors take very long time on
common hardware so even though it wasn't the best fit, the data
is big enough to catch good semantic similarities.

On  loading  the  model,  Word2Vec  reads  the  compressed
binary model file then constructs in-memory lookup table to
serve nearest word queries. However, this process needs a large
portion  of  memory  (6-8  GB) to  be  available  in  the  worker
node. Since MapReduce works distributed, Word2Vec model
needs to be loaded on every worker node, which also means
that  every  worker  node  will  be  required  to  have  specified
amount of RAM available. This extra requirement may affect
some  cluster  configuration  because  many  common  jobs
wouldn't  require  that  kind  of  memory.  Distribution  of  the
Word2Vec model  file  can  either  be done manually  to  every
node or it can be placed in HDFS where participating nodes
can read from. 

    … 

Figure: Memory of worker nodes while running SimJoin with 
Word2Vec. Each node loads W2V model at the start of the job.

C. Performance: Pig Algorithm
Experiments  of  plain  similarity  join  algorithm  were

performed  with  different  number  of  input  data  on  a  single
node.
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Input size (x1000) Runtime (s) count (and percentage)
of similar pairs, t = 0.6

10 186 1866 (0.00373 %)

15 465 3814 (0.00339 %)

20 695 5094 (0.00255 %)

25 1243 9940 (0.00318 %)

30 2201 14273 (0.00317 %)

35 3248 19070 (0.00311 %)

45 6212 31187 (0.00308 %)

55 10514 45074 (0.00298 %)

100 38895 116749 (0.00234 %)

Third column denotes the number of similar pairs reported 
for each case. The percentage value in paranthesis denote what 
percentage is the similar pairs to all possible pairs (n^2-n)/2, 
which suggests that similar pairs are very sparse (approx. 1 in 
31000 pairs).

The reason of the sharp increase for 100K data is that the 
intermediate data to reduce was too big (around 50 GB 
observed) for one node to process efficiently, so the reduce 
took too much time to complete. We need more nodes to test 
this.

The line is somewhere between O(n) and O(n^2) just as 
expected: Count filtering technique prunes dissimilar pairs so 
average runtime complexity is less than the worst case 
complexity O(n^2). This can be improved with multiple nodes 
and/or other aggressive pruning techniques. 

D.Performance: Spark Algorithm

Input size (x1000) Runtime (s)

5 137

10 1269

20 6681

Spark application took more time because of high garbage 
collection needs while processing RDDs. Every transformation
creates many objects on the fly so it leads to high amount of 
GC activity. The code can be tweaked to achieve better 
timings. 

E. Sample Output & Discussion
Table below shows partial output of the algorithm.

Tweet 1 Tweet 2 Score

@Ntshalie  thank you >thank-you! MG
https://t.co/OKQd1C4qdt

0.6667

Happy birthday!!!:)) hope you
have a great day

@alexbradbury33
https://t.co/tTX84X1tzs

@alexissopata happy 18th
birthday! Hope you have a

great day

0.7

4
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W2V Model
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W2V Model

MR Job

W2V Model



one person followed me //
automatically checked by
https://t.co/bc1Vm47Cho

one person unfollowed me //
automatically checked by
https://t.co/vGocgQxKng

0.6667

I've harvested 1,750 of food!
https://t.co/K83OFXYxeK
#android, #androidgames,

#gameinsight

I've harvested 377 of food!
https://t.co/WzlHXGASgF
#android, #androidgames,

#gameinsight

0.7143

Just posted a photo
https://t.co/7rGxjVujHm

Just posted a photo
https://t.co/oHRJKWmQm5

1.0

High scored pairs are mostly auto generated tweets from
various  applications  and  websites  as  they  generally  offer  a
'tweet this' button which offers a template which most people
do not bother to change before posting it.

There are also authentic pairs such as “happy birthday” and
“thank  you”  messages  in  the  table.  They  have  high  score
because  they  are  short  and  shared  tokens  constitute  a  high
percentage  of  all  tokens.  If  either  one was longer, the score
would decrease so they may not be able to reach the threshold. 

By intuiton, it is also unlikely that human created content to
have  high  Jaccard  score  without  direct  copying  involved.
Filtering out top score (> 0.9) pairs will likely prune some of
the non-authentic tweet pairs. 

V. CONCLUSION & FUTURE REMARKS

This project has helped us to learn and apply much about
similarity join with MapReduce and word vectors. 

Still, there can be many improvements: 
• Other token-based metrics such as OVERLAP, DICE,

COSINE can be experimented. 
• Aggressive  pruning  (filtering)  can  be  implemented

such as prefix filtering. This will greatly help lower
runtime costs.

• Trials  with  multiple  nodes  can  be  performed  to
explore the algorithm scalability.

• Maximum score upper bound can be used to prune
machine-generated record pairs.

• Use a better tokenization technique for high quality
results.

• Experiment  with  different  datasets  such  as  articles,
homework assignments, other social network posts.

• Port Word2Vec to Java for better performance.
• Retrain  Word2Vec  vector  data  with  relevant

optimizations.
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