
Robust Social Event Detection in Twitter
Bilkent University CS533 Spring 2016 Project Final Report

Fouad Amira
Bilkent University, CS Dept
fouad.amira@bilkent.edu.tr

Selim Eren Bekçe
Bilkent University, CS Dept

eren.bekce@bilkent.edu.tr

ABSTRACT

Twitter is used by millions of people every day around the world

and people tend to report on their surroundings more than ever. In

this paper, we investigate solutions to detect political social events

by analyzing large number of tweets, which may prove to be

faster and more reliable than some news agencies. We will be

investigating the recent social events in Turkey with a input data

size of 160 million tweets. Robustness is a vital element in the

analysis of such big number of tweets so we look at ways to

optimize processing speed and filter out deficient data. We

convert filtered data into statistical models and employ an

anomaly detection algorithm to detect such events. Evaluation is

done by looking at the precision of signaled events and improving

the detector parameters.

1. INTRODUCTION
Twitter is a microblogging platform people use for expressing

themselves and their surroundings. It recently acquired important

place in many people’s lives as it is also commonly used for

communication around particular topics and people. Another very

important use for Twitter is emergencies and events. It is very

convenient to use from smartphones, it is also very easy to attach

photos, and get instantaneous feedback from their followers. This

convenience allows people to capture and report the events

happening in their surroundings for other people to see and

understand about the event. Events can be very broad in sense it

can be anything from political protests to artistic occasions. Some

events are more prominent than others and the urge to share them

with other people will be more prominent.

Recently in Turkey, there were many political events all over the

country. There was also a suppression on news agencies so they

were blocked by the government to share news on national

television and newspapers, which are the prominent source of

information for many of the population, most people simply were

unaware of those protests for an extended period of time because

there was no sign of them on the news.

With the help of social media platforms, including Twitter, it was

possible for vast majority to understand and get information on

those events. People were sharing photos and updates on their

surroundings and it allowed tracking the events on the Twitter in

near real time. The reliability of those news is subject to debates

but as more number of people tend to share same information, it

becomes more likely to be correct. This proved that social media

platforms can actually be used for real time news source. In this

work, we inquired whether it is possible to detect those events

automatically by using Tweets. We employed statistical models to

detect and report significant rises in number of event related

tweets.

2. LITERATURE REVIEW
We have looked at two papers related to Event Detection using

Twitter.

“TEDAS: A Twitter-based Event Detection and Analysis System”

[1]

This is an intuitive Twitter event detection infrastructure which

mainly focuses on the detection crime and disaster related events

with respect to spatial and temporal locality. They developed

keyword based tweet streaming, keyword rule generator, related

tweet classification, location prediction heuristics for this task.

Their infrastructure has both offline and online components.

“Twitter earthquake detection: earthquake monitoring in a social

world” [2]

They ask the question whether it is possible to detect earthquakes

by looking at tweets with respect to spatial and temporal locality.

They developed an online anomaly detection algorithm which

signals an event if there is an abnormal increase in targeted

tweets. They then compare signaled events to real earthquakes for

validation.

Earthquake detection and social event detection are very similar

topics at their core. For example, earthquake related tweet is likely

to have ‘earthquake’ in its content. A social event related tweet is

also likely to have related keywords. Earthquakes can be detected

by the increase of such matching tweets in the incoming stream

and social events are also like that.

There are several papers on Event Detection topic. We have

picked these papers because in some extent, their methods and

way of thinking have good correlation with our proposed

methodology for this task.

3. WORK DONE
There are many steps involved when doing “a Twitter

experiment”. Since tweets are basically unstructured human

written text with only a few metadata, we need to make use of

Information Retrieval methods for detecting events. We will

describe a series of steps to transform collection of tweets into list

of detected events. Robustness is a very important factor here, as

any data created by humans are prone to errors, empty and

erroneous values. Since we are vastly applying text processing

methods on tweets, robustness and data cleaning become very

important.

Our methodology can be roughly summarized as:

a) Serialization and compression to process raw data, filter

deficient data out and create semi-processed data form

to efficiently apply processing steps on.

b) Cleaning to filter on desired date range and tweet types,

discarding non-relevant ones.

c) Preprocessing and tokenization steps applies IR and text

transformation operations for robustness, such as

lowercase conversion and stemming. Vital for free text

operations.

d) Classifier is the step where the last piece of filtering

happens. It selects ‘eventful’ tweets and discards the

rest. Its logic depends on the output of tokenization part.

e) Event Detector part is the main processing part where

the events are detected out of the list of tweets generated

from the classifier part.

We have obtained 160 million raw Turkish tweets collected over

years 2013 to 2015 [3]. This particular period was important

because there were many social events in Turkey.

We will first describe an offline algorithm which works on high

volume of tweets in an efficient manner. It would be used to

detect previous events occurred. We will then describe a novel

online algorithm design which works through connecting to

Twitter Streaming API and report events as they naturally occur.

These two algorithms are very similar in nature and they share the

preprocessing part, the only noticeable difference is the event

detector part.

3.1 Offline Algorithm
First algorithm we’ve designed is an offline algorithm. In

following subsections, we explain some details about the major

components of our proposed methodology. Figure 1 shows the

components and steps in the Offline Algorithm.

Figure 1: Offline Algorithm steps

3.2 Serialization and Compression
We obtained our dataset with 160 million tweets was stored in

raw JSON form. It was difficult to run processing on because of

the huge file size and parsing overheads. It also contained lots of

raw and redundant data so we discarded unnecessary raw parts

then applied binary serialization and compression to obtain semi-

processed tweets to efficiently store and perform processing on, as

can be seen on Figure 2. This process took half a day on a single

computer but it was very effective such that the data size was

tremendously reduced from 500 GB to 9.7 GB.

Figure 2: Serialization and compression steps

3.3 Cleaning
‘Retweet’s in Twitter is like carbon copies of other (original)

tweets, which usually mean that the ‘retweet’ author has same or

similar opinion on related tweet so that he or she chose to

‘retweet’ it. This brings unneeded redundancy to the model and it

amplifies the number of false positives in case an unrelated tweet

is a popular one. Therefore, we chose to discard retweets and

decided only to take original tweets into account while detecting

events.

In our findings, we’ve found that nearly 30% of tweets are

retweets, which is a huge number.

A ‘Reply’ to another tweet is also possible in Twitter. Replies

usually indicate a direct conversation between some parties or

one-side mentions to particular notable person or hub in order to

ask a question or express opinion about a common subject. These

kind of tweets (both replies and mentions) are also not relevant to

our subject as we are seeking immediate responses to social

events. Thus, we also discard these kind of tweets.

3.4 Preprocessing and Tokenization
After cleaning out unneeded tweets, we apply following

preprocessing on the tweet text, respectively.

Replace all URLs with <URL> identifier: The content of URLs is

not relevant in our experiment. Moreover, since we will tokenize

the tweet text with non-alphanumeric characters, the characters in

URLs ‘:’, ‘/’ will get replaced by and it will be decomposed into

multiple tokens, which is not desired.

Since replied tweets were dropped in previous stage, we are not

doing anything special for the user mention tags.

Convert tweet text into lowercase: This is important to neutralize

the text. Note that since our target language is Turkish, we do this

with respect to Turkish characters (‘I’ ‘ı’).

Convert non-alphanumeric characters to spaces: Our classifier

looks at concrete words, not punctuation or other non-printable

characters. Therefore, we replace all non-alphanumeric characters

with spaces. Note that we are using a Unicode regex class for this

purpose so that it does not replace accented or language specific

characters like ‘ğ’ or ‘â’. Then we remove excess spaces from the

tweet text so multiple spaces become one space. Note that this

process also removes hashtags ‘#’ from the tweet text. This is OK

as hashtag context is not relevant in our event detector.

Next we use Zemberek [4] for stemming and tokenizing purposes.

It tokenizes given (Turkish) text with respect to its stems so that it

is much robust for our classifier to find relevant keywords in the

corpus (‘protestolar’ ‘protesto’)

3.5 Classifier
Our classifier is the final step to decide whether a tweet is

‘eventful’ or ‘not eventful’. We look at the generated tokens and

look for following tokens, which are relevant for protests and

social events: [protesto, eylem, toma, saldırı, direniş, barikat].

Even with these handful of words, the number of false positives is

still high. An improvement is to give importance to the present

tense clauses (‘-yor’) which implies something is going on. For

example, the following sentence contains present tense clauses

and it reports an ongoing social event in action:

“Ankara Kızılay'da madenci heykeli

önünde Soma'daki iş cinayeti protesto
ediliyor.”

3.6 Histogram Generation
After Classifier part, we generate ‘histogram’ of ‘eventful’ tweets

by aggregating them into fixed time windows and counting them

in every interval. The time interval is called the Grouping Factor.

The output is a very compact representation of the input data

which only consists of the interval timestamp and the number of

tweets in that interval. It will be consumed in the Event Detector

part.

Figure 3: Histogram Generation steps

Processing all tweets and classifying takes more time than

evaluating histogram. Therefore, the advantage of producing an

output at this point is that we are now able to change the

parameters of the Event Detector part without having to run

Classifier again. We call these series of steps including cleaning,

preprocessing, tokenization and classifier as Histogram

Generation, whose details can be observed in Figure 3.

3.7 Event Detector
The core of our algorithm consists of detecting events. We have

constructed statistical models by reading generated histogram and

employ an anomaly detection algorithm and signals an event

when a threshold in number of tweets is reached.

After reading the generated histogram of tweets we employ the

characteristic function [2] which is defined as:

C(𝑡) = STA/(𝑚LTA + 𝑏)

A detection is declared when C(t) exceeds 1. The STA is the short

term average taken 15 minutes before the time of the event and

LTA is the long term average taken 5 hours before the event. m

and b are tunable parameters used to determine the sensitivity of

the detector. Low values result in a more sensitive detector.

LTA helps with approximating the background noise of Tweets,

possibly because of old events that happened long time before the

detection time, C(t) requires higher signal levels (STA) to trigger

at higher noise levels (LTA).

We require C(t) to drop to a threshold until a new event can be

detected. Without this threshold, an event spike signals many

events until LTA stabilizes, which may happen several intervals

later and until it stabilizes it will signal semantically same event

once again, which is undesirable. We have used drop threshold

value of 0.25 and 0.5.

Figure 4: Characteristic Function and Event Detector steps

Figure 4 shows the final steps of our algorithm. It starts by

reading the generated histogram and calculating histogram for

every time window. It is important to note that since histogram

file only contains non-zero intervals, it is customary to fill empty

intervals before calculating C(t) values.

After an event is declared for an interval, we also output the

related tweets by contacting the tweet store for evaluation to be

applied later in the chain.

3.8 Online Algorithm
Online Algorithm was also designed to prove that the core of the

event detection algorithm can be applied effectively to online

case. The major difference between the online and offline

algorithms is that the source of the tweets is not stored on local

storage; instead it is received in real time from a Twitter

streaming API. The STA/LTA semantics work nicely with

streaming data; we only need to store the last LTA window as

shown in Figure 5. At this phase it is important that the

preprocessing and tokenization phases are optimized to work

efficiently so that they can sustain a good amount of real life data.

Figure 5: Online Algorithm steps

After storing an LTA worth amount of data in the cache, the

algorithm continues the same way as in the offline algorithm.

However, the cached data needs to be flushed after processing it

in order to make space for new data to take place and be analyzed.

4. EXPERIMENTAL RESULTS

4.1 The Test Procedure
We tried to detect the events in the time period between

01.04.2013 – 01.01.2014. we chose this period because our twitter

dataset is Turkish and the specified period is a hot period in

Turkey and many political events happened in that time frame.

In order to visualize the data, we wrote a Matlab script that

prepares the histogram’s data for a proper visualization as it can

be seen in Figure 3. The script also implemented the C(t) function

and plotted the results and placed the events that are above a

certain threshold on top of the C(t) function values.

During the run, we processed 25.710.914 Tweets, 91.085 of these

Tweets were related to political events within the previously

mentioned time frame. Using a grouping factor of 5 minutes and

LTA and STA values of 5 hours and 15 minutes respectively, we

obtained the histogram shown in Figure 6.

Figure 6: Histogram of tweets between 04.2013 – 01.2014

As it can be seen in Figure 6, the number of eventual events is

high in the period between May 2013 and September 2013 since

it’s a hot period in the Turkish history and a lot of political events

and protests happened in that period.

Figure 7: C(t) function with m=2 b=3

After generating the histogram, we applied the C(t) function over

the grouped tweets we obtained in the previous step. The result of

the C(t) function decides whether an event happened or not, so if

the value of the C(t) function gets higher than one then an event is

triggered. Please note that, for two consecutive events, the C(t)

value after the first one must drop to a certain threshold before the

second event is considered a valid event. This is done because we

want to guarantee that the two detected events are separate events

and any remaining tweets from the first event have no significant

influence in triggering latter events. Figure 7 shows the result of

applying the characteristic function with m= 2 and b = 3 (sensitive

detector). Figure 8 shows the zoomed version of Figure 4 on the

period of time with maximum number of events.

Figure 8: C(t) function with m=2 b=3 (zoomed version)

The characteristic function contains two tunable parameters: m

and b, these parameters control the liberty of the detector, the

smaller the value of m and b the more sensitive the detector is and

as a result of that the number of detected events increases with a

higher portion of false positive events. However, when the value

of these parameters is high, then the detector is more conservative

and the detected events have higher probability of being true

positive. Figure 9 shows the C(t) function and the triggered events

for the values of m and b of 4 and 6 respectively.

Figure 9: C(t) function with m=4 and b=6 (moderate)

Table 1 shows the count of detected events for different values of

m and b and different threshold values.

Table 1: Number of generated events with different m and b

values

4.2 Variable Tuning and Optimization

4.2.1 Tuning the Grouping Factor
In order to optimize the result, we ran the algorithm again with

different grouping factors to generate different histograms and

hence different results of the characteristic function. The grouping

factor is the time period in which the Tweets are grouped and

showed in the histogram. Figure 6 shows the histogram for the

tweets using a grouping factor of 5 minutes, Figure 10 shows the

C(t) function for tweets with grouping factors of 10.

Figure 10: C(t) with groping of 10 min and m=2 b=3

In Figure 10 we can notice that the number of detected events for

the same period has risen from 68 to 134 meaning that the

detector became more sensitive after increasing the grouping

interval from 5 minutes to 10 minutes. However, when we

decreased the grouping window to 1 minute, the detector was not

able to detect the events properly and only little number of events

was detected as shown in Figure 11.

Figure 11: C(t) function with groping of 1 minute and m=2

b=3

4.2.2 LTA and STA
As we mentioned earlier, LTA is the long term average which

tries to eliminate the noise in the background while STA is the

short term average for checking the events with high count values.

We tried to use different values for LTA and STA and compare

the results. Figure 7 shows the C(t) function with LTA = 5 hours

and STA = 15 minutes. Figure 12, you can see the value of the

characteristic function with LTA = 2 hours and STA = 10

minutes. By increasing the value of LTA and STA to 25 hours and

1 hour respectively we obtain the result shown in Figure 13. Note

that the number of detected events for using the new values of

LTA and STA and the same values of m and b has dropped to 18

compared to 68 which was the count of detected events of the

detector with LTA = 5 hours and STA = 15 min as shown in

Figure 7.

Figure 12: C(t) function for LTA = 2 hours and STA = 10 min

Figure 13: C(t) function for LTA = 25 hours and STA = 1

hour

5. EVALUATION
After detecting the events in our dataset, we evaluated the

precision of our results by checking if the events actually

happened in real life, we did that by checking the dates of the

events manually and we counted the true positive events against

false positive events.

We evaluated precision for one result set (m=2, b=5,

STA=15mins, LTA=5hrs) by manually validating every signaled

event. There were 16 valid events out of 24 reported, which

results in a precision value of 2/3.

It is observed that some reported events contain spam tweets and

hashtags. By applying some spam filtering techniques, as stated in

Future Work section, the precision can be improved furthermore.

Table 2: Tweet samples from one event

Some sampled tweets from one particular event (happened on

2013-08-06 23:25:00 EEST) can be observed in Table 2, which

mentions an ongoing protest in Şükrü Saracoğlu stadium.

6. CONCLUSION AND FUTURE WORK
This project proves that event detection via Twitter is possible via

statistical analysis methods and it can produce credible results.

The results we obtained were affected by the spam Tweets and we

could increase the precision of our system by employing an

algorithm for detecting spam tweets and filtering them out of our

result set. This seems like a good chance for integrating more than

one project discussed on the class and they handled the issue of

spam Tweets. The selection of words used for filtering would

highly affect the results and the precision of the system so in the

future we can apply learning techniques for selecting the

keywords that would yield the best precision.

It is also important to calculate recall by finding a list of social

events which occurred at a certain time frame and then investigate

how much of these events have been detected by our system.

Calculating the recall is a challenge in our case because we need

to collect a reliable list of all events happened in a certain time

frame, which can be done by crawling some news archives and

agencies which can be topic for another project.

It may also be interesting to explore events with respect to spatial

locality, in addition to temporal locality. However, most tweets do

not have location information as it is a usually a privacy concern

for users. Locations can possibly be estimated by considering

moving average location of user’s last several geo-tagged tweets,

user’s location tag in his or her profile and locations of the

network of the user [1]. Then, those locations may be used to

determine the impact radius of detected events and generate event

heat maps for better visibility.

7. REFERENCES
[1] Li et al. "TEDAS: A Twitter-based Event Detection and

Analysis System", 2012 IEEE 28th Conference on Data

Engineering.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=622818

6&tag=1

[2] Earle et al. "Twitter earthquake detection: earthquake

monitoring in a social world", Annals of Geophysics, 54, 6,

2011.

http://www.annalsofgeophysics.eu/index.php/annals/article/v

iew/5364/5494

[3] 160M Tweets used for evaluation were obtained from Hakan

Ferhatosmanoğlu.

[4] Zemberek Library by Ahmet Akın et. al.

https://github.com/ahmetaa/zemberek

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228186&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6228186&tag=1
http://www.annalsofgeophysics.eu/index.php/annals/article/view/5364/5494
http://www.annalsofgeophysics.eu/index.php/annals/article/view/5364/5494

